Лазерный луч телескопа прорезает размытое небо

Автор: Mega
Просмотров: 4915
Комментариев: 0
Категория: Технологии
Дата: 13-08-2010, 20:06
Лазерный луч телескопа прорезает размытое небо
Лазерный луч телескопа прорезает размытое небоНовая лазерная адаптивная оптическая система в действии. На горе Хопкинс в Аризоне пучок из пяти лазерных лучей направлен в небо для улучшения изображения 6.5-метрового мультизеркального телескопа (MMT).
Атмосфера, необходимая для людей и других форм жизни на Земле, практически повсеместно проклинается астрономами.
Лазерный луч телескопа прорезает размытое небоНовая лазерная адаптивная оптическая система в действии. На горе Хопкинс в Аризоне пучок из пяти лазерных лучей направлен в небо для улучшения изображения 6.5-метрового мультизеркального телескопа (MMT).

Атмосфера, необходимая для людей и других форм жизни на Земле, практически повсеместно проклинается астрономами. Она прекрасно подходит для дыхания, но когда дело доходит до астрономических наблюдений тусклых объектов, атмосфера постоянно стремится испортить изображение. За последние двадцать лет развитие адаптивной оптики, в основном телескопов с изменением формы зеркала для устранения аберраций, значительно улучшило качество наблюдений космического пространства с Земли.

С новой техникой на основе лазеров (Да! Лазеров!), картинка с телескопа с адаптивной оптикой может быть почти настолько же четкой, как с космического телескопа «Хаббл», при более широком поле зрения.

Группа астрономов Аризонского университета под руководством Майкла Харта разработала методику, которая позволяет калибровать поверхность телескопа с очень высокой точностью, что приводит к получению очень четких изображений объектов, которые обычно получались весьма размытыми.

Лазерная адаптивная оптика – относительно новая методика улучшения изображения на наземных телескопах. Прекрасно иметь возможность использовать космические телескопы такие как «Хаббл» или в недалеком будущем «Джеймс Уэбб», но их запуск и эксплуатация, безусловно, обходятся очень дорого. И главное, существует огромное количество астрономов претендующих на очень ограниченное время работы на этих телескопах. В таких телескопах, как Очень большой телескоп (ESO VLT) в Чили, или телескоп Кек на Гавайях уже используется лазерная адаптивная оптика для улучшения качества изображения.

Изначально адаптивная оптика фокусировалась на самой яркой звезде вблизи от области наблюдения телескопа, а приводы в задней части зеркала очень быстро перемещались компьютером для компенсации атмосферных искажений. Однако, возможности такой системы ограничены наличием областями неба вблизи ярких звезд.

Лазерная адаптивная оптика гораздо гибче в использовании – технология использует один лазер для возбуждения молекул атмосферы для появления свечения, которое используется в качестве «путеводной звезды» для калибровки зеркала, чтобы компенсировать искажения, вызванные турбулентностью атмосферы. Компьютер анализирует свет от искусственной «путеводной звезды» и определяет поведение атмосферы, изменяя форму поверхности зеркала для компенсации искажений.

При использовании единственного лазера, адаптивная оптика может компенсировать турбулентность только на весьма ограниченном поле зрения. Новая технология, которая впервые была применена на 6.5-мметровом мультизеркальном телескопе ММТ в Аризоне, включает не один, а пять лазеров, чтобы создать пять отдельных «путеводных звезд» на широком поле зрения в две угловые минуты. Угловое разрешение телескопа меньше, чем у системы с одним лазером, для примера, телескоп Кек или ESO VLT могут делать снимки с угловым разрешением 30-60 угловых миллисекунд, но возможность иметь более четкое изображение на большом поле зрения имеет массу преимуществ.

На фото слева при отключенной лазерной адаптивной оптической системе изображение скопления M3 размыто. А на правой части снимка, при использовании данной системы изображение гораздо четче и стали видны отдельные звезды в скоплении.

Возможность проводить спектральные исследования старых тусклых галактик – одна из возможных сфер применения этой технологии. С помощью спектрального анализа ученые способны гораздо лучше понять строение и структуру космических объектов. При использовании этой технологии, изучение спектра галактик возрастом десять миллиардов лет, а у них очень большое красное смещение, возможно даже с поверхности Земли.

Также при использовании лазерной технологи гораздо проще структурировать сверхмассивные скопления звезд, поскольку разнесенные по времени снимки с телескопа позволят астрономам понять, какие звезды являются частью скопления, а какие гравитационно независимы.

Научно-популярное онлайн издание "Меганаука"